wampy Documentation
Release 0.9.19

simon harrison

Dec 21, 2018

Contents

1 WAMP 3
1.1 Whatis WAMP? 3
2 User Guide 5
2.1 Whatis Wampy? e e e e e e e e e e e 5
22 Awampy Application e e 5
2.3 Awampy CHENnt o o e e e e e e e e e e e e e 6
24 Sending aMessage e e e e e e e e e e e 7
2.5 PublishingtoaTopic L o o e e e e e e e 7
2.6 SubscribingtoaTopic L e 8
277 Remote Procedure Calls 8
2.8 Exception Handling e e e e e 8
2.9 Authentication Methods 9
2.10 The MessageHandler Class e 11
2.11 Testing Wampy @PPS « =« « « ¢ o v e 11
2,12 TLS/WSS SUPPOIT « « o v v v v o e i e e e e e e e e e e e e e e e e 13
3 modules 15
3.1 wampy.constants module oL oL e e 15
3.2 wampyerrorsmodule e 15
3.3 wampy.roles.callee module L. L e e e e e e e e e e 15
3.4 wampy.sessionmodule L L L oL e e e e e e e 15
3.5 wampymessages.callmodule L oL 16
3.6 wampy.messages.hellomodule oL 16
3.7 wampy.messages.goodbye module 17
3.8 wampy.messages.subscribe module Lo 17
3.9 wampy.messages.publishmodule 18
3.10 wampy.messages.yieldmodule oL 18
3.11 wampy.messages.registermodule Lo oL 18
3.12 wampy.peers.clientsmodule e 19
3.13 wampy.peers.routers module L Lo e 19
3.14 wampy.roles.callee module e e e e e e e e 20
3.15 wampy.roles.callermodule 20
3.16 wampy.roles.publishermodule o L 20
3.17 wampy.roles.subscribermodule 20
4 Indices and tables 21

Python Module Index

23

wampy Documentation, Release 0.9.19

WAMP RPC and Pub/Sub for your Python apps and microservices

This is a Python implementation of WAMP not requiring Twisted or asyncio, enabling use within classic blocking
Python applications. It is a light-weight alternative to autobahn.

With wampy you can quickly and easily create your own WAMP clients, whether this is in a web app, a microservice,
a script or just in a Python shell.

wampy tries to provide an intuitive API for your WAMP messaging.

Contents 1

http://autobahn.ws/python/

wampy Documentation, Release 0.9.19

2 Contents

CHAPTER 1

WAMP

Background to the Web Application Messaging Protocol of which wampy implements.

What is WAMP?

The WAMP Protocol is a powerful tool for your web applications and microservices - else just for your free time, fun
and games!

WAMP facilitates communication between independent applications over a common “router”. An actor in this process
is called a Peer, and a Peer is either a Client or the Router.

WAMP messaging occurs between Clients over the Router via Remote Procedure Call (RPC) or the Pub-
lish/Subscribe pattern. As long as your Client knows how to connect to a Router it does not then need to know
anything further about other connected Peers beyond a shared string name for an endpoint or Topic, i.e. it does not
care where another Client application is, how many of them there might be, how they might be written or how to
identify them. This is more simple than other messaging protocols, such as AMQP for example, where you also need
to consider exchanges and queues in order to explicitly connect to other actors from your applications.

WAMP is most commonly a WebSocket subprotocol (runs on top of WebSocket) that uses JSON as message serial-
ization format. However, the protocol can also run with MsgPack as serialization, run over raw TCP or in fact any
message based, bidirectional, reliable transport - but wampy (currently) runs over websockets only.

For further reading please see some of the popular blog posts on WAMP such as http://tavendo.com/blog/post/
is-crossbar-the-future-of-python-web-apps/.

http://wamp-proto.org/
http://tavendo.com/blog/post/is-crossbar-the-future-of-python-web-apps/
http://tavendo.com/blog/post/is-crossbar-the-future-of-python-web-apps/

wampy Documentation, Release 0.9.19

4 Chapter 1. WAMP

CHAPTER 2

User Guide

Running a wampy application or interacting with any other WAMP application

What is wampy?

This is a Python implementation of WAMP not requiring Twisted or asyncio, enabling use within classic blocking
Python applications. It is a light-weight alternative to autobahn.

With wampy you can quickly and easily create your own WAMP clients, whether this is in a web app, a microservice,
a script or just in a Python shell.

wampy tries to provide an intuitive API for your WAMP messaging.

A wampy Application

This is a fully fledged example of a wampy application that implements all 4 WAMP Roles: caller, callee, publisher
and subscriber.

from wampy.peers.clients import Client
from wampy.roles import callee
from wampy.roles import subscriber

class WampyApp (Client) :

@callee
def get_weather(self, xargs, *xkwargs):
weather = self.call ("another.example.app.endpoint™)

return weather

@subscriber (topic="global-weather")
def weather_events(self, weather_data):
process weather data here
self.publish (topic="wampy-weather", message=weather_data)

Here the method decorated by @callee is a callable remote procedure. In this example, it also acts as a Caller, by
calling another remote procedure and then returning the result.

And the method decorated by @subscribe implements the Subscriber Role, and when it receives an Event it then acts
as a Publisher, and publishes a new message to a topic.

http://autobahn.ws/python/

wampy Documentation, Release 0.9.19

Note that the call and publish APIs are provided by the super class, Client.

Running The Application

wampy provides a command line interface tool to start the application.

$ wampy run path.to.your.module.including.module_name:WampyApp

For example, running one of the wampy example applications.

$ wampy run docs.examples.services:BinaryNumberService --config './wampy/testing/
—configs/crossbar.config.ipv4. json'

A wampy Client

If you’re working from a Python shell or script you can connect to a Router as follows.

1. Router is running on localhost, port 8080, start and stop manually.

from wampy.peers import Client

client = Client ()

client.start () # connects to the Router & establishes a WAMP Session
send some WAMP messages here

client.stop() # ends Session, disconnects from Router

2. Router is running on localhost, port 8080, context-manage the Session

from wampy.peers import Client

with Client () as client:
send some WAMP messages here

on exit, the Session and connection are gracefully closed

3. Router is on example.com, port 8080, context-managed client again

from wampy.peers import Client

with Client (url="ws://example.com:8080") as client:
send some WAMP messages here

exits as normal

Under the hood wampy creates an instance of a Router representaion because a Session is a managed conversation
between two Peers - a Client and a Router. Because wampy treats a Session like this, there is actually also a fourth
method of connection, as you can create the Router instance yourself and pass this into a Client directly. This is
bascically only useful for test and CI environments, or local setups during development, or for fun. See the wampy
tests for examples and the wampy wrapper around the Crossbar.io Router.

6 Chapter 2. User Guide

wampy Documentation, Release 0.9.19

Sending a Message

When a wampy client starts up it will send the HELLO message for you and begin a Session. Once you have the
Session you can construct and send a WAMP message yourself, if you so choose. But wampy has the pub1ish and
rpc APIs so you don’t have to.

But if you did want to do it yourself, here’s an example how to...

Given a Crossbar.io server running on localhost on port 8080, a realm of “realm1”, and a remote procedure “foobar”,
send a CALL message with wampy as follows:

In [1]: from wampy.peers.clients import Client

In [2]: from wampy.messages.call import Call

In [3]: client = Client ()

In [4]: message = Call (procedure="foobar", args=(), kwargs={})

In [5]: with client:
client.send_message (message)

This example assumes a Router running on localhost and a second Peer attached over the same realm who hjas
registered the callee “foobar”

Note that in the example, as you leave the context managed function call, the client will send a GOODBYE message
and your Session will end.

wampy does not want you to waste time constructing messages by hand, so the above can be replaced with:

In [1]: from wampy.peers.clients import Client
In [2]: client = Client ()

In [5]: with client:
client.rpc.foobar (xargs, =xxkwargs)

Under the hood, wampy has the RocProxy object that implements the rpc APL

Publishing to a Topic

To publish to a topic you simply call the publish API on any wampy client with the topic name and message to
deliver.

from wampy.peers.clients import Client
from wampy.peers.routers import Crossbar

with Client (router=Crossbar()) as client:
client.publish(topic="foo", message={'foo': 'bar'})

The message can be whatever JSON serializable object you choose.

Note that the Crossbar router does require a path to an expected config.yaml, but here a default value is used. The
default for Crossbaris "./crossbar/config. json".

2.4. Sending a Message 7

wampy Documentation, Release 0.9.19

Subscribing to a Topic

You need a long running wampy application process for this.

from wampy.peers.clients import Client
from wampy.roles.subscriber import subscribe

class WampyApp (Client) :

@subscribe (topic="topic—name")

def weather_events(self, topic_data):
do something with the ° ‘topic_data’ ' here
pass

See runnning a wampy application for executing the process.

Remote Procedure Calls

Classic

Conventional remote procedure calling over Crossbar.io.

from wampy.peers import Client
from wampy.peers.routers import Crossbar

with Client (router=Crossbar()) as client:
result = client.call ("example.app.com.endpoint", <*args, =**kwargs)

Microservices

Inspired by the nameko project.

from wampy.peers import Client
from wampy.peers.routers import Crossbar

with Client (router=Crossbar()) as client:
result = client.rpc.endpoint (x+kwargs)

See nameko_wamp for usage.

Exception Handling

When calling a remote procedure an Exception might be raised by the remote application. It this happens the
Callee’s Except ion will be wrapped in a wampy RemoteError and will contain the name of the remote procedure
that raised the error, the request_id, the exception type and any message.

from wampy.errors import RemoteError
from wampy.peers.clients import Client

8 Chapter 2. User Guide

https://github.com/nameko/nameko
https://github.com/noisyboiler/nameko-wamp

wampy Documentation, Release 0.9.19

with Client () as client:

try:

response = client.rpc.some_unreliable_procedure ()
except RemoteError as rmt_err:

do stuff here to recover from the error or

fail gracefully

Authentication Methods

The Realm is a WAMP routing and administrative domain, optionally protected by authentication and authorization.

In the WAMP Basic Profile without session authentication the Router will reply with a “WELCOME” or “ABORT”
message.

|Client | |Router|
N N
HELLO |
| ——mm e >
\ |
\ WELCOME |
| Cmmmm e
, =t , ——t——
|Client |

|Router|

The Advanced router Profile provides some authentication options at the WAMP level - although your app may choose
to use transport level auth (e.g. cookies or TLS certificates) or implement its own system (e.g. on the remote proce-

dure).

|Client | |Router |
‘77+777l \77+777l

| HELLO |

| ——— >

\ |

| CHALLENGE |

| <

\ |

| AUTHENTICATE |

\
| WELCOME or ABORT|
\

y——F———. , ——t+———.
|Client | |Router|

Challenge Response Authentication

WAMP Challenge-Response (“WAMP-CRA”) authentication is a simple, secure authentication mechanism using a
shared secret. The client and the server share a secret. The secret never travels the wire, hence WAMP-CRA can be
used via non-TLS connections.

2.9. Authentication Methods 9

wampy Documentation, Release 0.9.19

wampy needs the secret to be set as an environment variable against the key WAMPYSECRET on deployment or in
the test environment (if testing auth) otherwise a WampyError will be raised. In future a Client could take
configuration on startup.

The Router must also be configured to expect Users and by what auth method.

For the Client you can instantiate the C1ient with roles which can take authmethods and authid.

roles = {
'roles': {
'subscriber': {},
'publisher': {},
'callee': {
'shared_registration': True,
s
'caller': {},
}I
'authmethods': ['wampcra'] # where "anonymous" is the default
'authid': 'your-username-or—-identifier'
}
client = Client (roles=roles)

And the Router would include something like...

"auth": {
"wampcra": |
"type": "static",
"role": "wampy",
"users": {
"your—-username-or—identifier": {
"secret": "prq7+YkJ1/K1W1X0YczMHw==",
"role": "wampy",
"salt": "saltl23",
"iterations": 100,
"keylen": 16,
}I
"someone—-else": {
"secret": "secret2",
"role": "wampy",
}I
}
}I
"anonymous": {
"type": "static",
"role": "wampy"

with permissions for RPC and subscriptions optionally defined. See the included testing config for a more complete
example.

10 Chapter 2. User Guide

https://github.com/noisyboiler/wampy/master/wampy/testing/config.static.auth.json

wampy Documentation, Release 0.9.19

The MessageHandler Class

Every wampy Client requires a MessageHandler. This is a class with a list of Messages it will accept and a
“handle” method for each.

The default MessageHandler contains everything you need to use WAMP in your microservices, but you may want
to add more behaviour such as logging messages, encrypting messages, appending meta data or custom authorisation.

If you want to define your own MessageHandler then you must subclass the default and override the “handle”
methods for each Message customisation you need.

Note that whenever the Session receives a Message it calls handle_message on the MessageHandler. You
can override this if you want to add global behaviour changes. handle_message will delegate to specific handlers,
e.g. handle_invocation.

For example.

from wampy.message_handler import MessageHandler

class CustomHandler (MessageHandler) :

def handle_welcome (self, message_obj):
maybe do some auth stuff here
super (CustomHandler, self) .handle_welcome (message_ob7j)
and maybe then some other stuff now like alerting

There may be no need to even do what wampy does if your application already has patterns for handling WAMP
messages! In which case override but don’t call super - just do your own thing.

Then your Client should be initialised with an instance of the custom handler.

from wampy.peers.clients import Client

client = Client (message_handler=CustomHandler ())

Testing wampy apps

To test any WAMP application you are going to need a Peer acting as a Router.

wampy provides a pytest fixture for this: router which must be installed via $ pip install --editable
. [dev]. Usage is then simple.

For example

def test_my_wampy_applications (router) :
do stuff here

The router is Crossbar.io and will be started and shutdown between each test.

It has a default configuration which you can override in your tests by creating a config_path fixture in your own
conftest or test module.

For example

import pytest

2.10. The MessageHandler Class 11

wampy Documentation, Release 0.9.19

@pytest.fixture
def config_path():
return './path/to/my/preferred/crossbar. json'

Now any test using router will be a Crossbar.io server configured yourself.

For example

def test_my_app (router) :
this router's configuration has been overridden!

If you require even more control you can import the router itself from wampy .peers.routers and setup your
tests however you need to.

wampy also provides a pytest fixture for a WAMP client.

Here is an example testing a wampy HelloService application.

import pytest

from wampy.roles.callee import callee
from wampy.peers.clients import Client
from wampy.testing import wait_for_registrations

class HelloService (Client) :

@callee

def say_hello(self, name):
message = "Hello ".format (name)
return message

@pytest.yield_fixture
def hello_service (router) :
with HelloService (router=router) as service:
wait_for_registrations(service, 1)
yield

def test_get_hello_message (hello_service, router, client):
response = client.rpc.say_hello (name="wampy")

assert response == "Hello wampy"

Notice the use of wait_for_registrations. All wampy actions are asynchronous, and so it’s easy to get
confused when setting up tests wondering why an application hasn’t registered Callees or subscribed to Topics, or a
Session even opened yet.

So to help you setup your tests and avoid race conditions there are some helpers that you can execute to wait for async
certain actions to perform before you start actually running test cases. These are:

execute with the client you're waiting for as the only argument
from wampy.testing import wait_for_session
e.g. ~~ wait_for_session(client) "’

wait for a specific number of registrations on a client
from wampy.testing import wait_for_registrations
e.g. " ‘walt_for_registrations(client, number_of registrations=5)

12 Chapter 2. User Guide

wampy Documentation, Release 0.9.19

wait for a specific number of subscriptions on a client
from wampy.testing import wait_for_subscriptions
e.g. " “walt_for_subscriptions (client, number_of_subscriptions=7)

provied a function that raises until the test passes
from test.helpers import assert_stops_raising
e.g. assert_stops_raising(my_func that_raises until_condition _met)

For far more examples, see the wampy test suite.

TLS/wss Support

Your Router must be configured to use TLS. For an example see the config used by the test runner along with the TLS

Router setup.

To connect a Client over TLS you must provide a connection URL using the wss protocol and your Router probably

will require you to provide a certificate for authorisation.

In [1]: from wampy.peers import Client

In [2]: client = Client (url="wss://...", cert_path="./...")

2.12. TLS/wss Support

13

https://github.com/noisyboiler/wampy/blob/master/wampy/testing/configs/crossbar.config.ipv4.tls.json
https://github.com/noisyboiler/wampy/blob/master/test/test_transports.py#L71
https://github.com/noisyboiler/wampy/blob/master/test/test_transports.py#L71

wampy Documentation, Release 0.9.19

14 Chapter 2. User Guide

CHAPTER 3

modules

wampy.constants module

wampy.errors module

exception errors.ConnectionError
Bases: exceptions.Exception

exception errors.IncompleteFrameError (required_bytes)
Bases: exceptions.Exception

exception errors .WampProtocolError
Bases: exceptions.Exception

exception errors .WampyError
Bases: exceptions.Exception

exception errors .WebsocktProtocolError
Bases: exceptions.Exception

wampy.roles.callee module

classmixins.ParseUrlMixin
Bases: object

parse_url ()
Parses a URL of the form:

ews://host[:port][path]
*wss://host[:port][path]

ews+unix:///path/to/my.socket

wampy.session module

class session.Session (client, router, transport, message_handler)

Bases: object

A transient conversation between two Peers attached to a Realm and running over a Transport.

15

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

wampy Documentation, Release 0.9.19

WAMP Sessions are established over a WAMP Connection which is the responsibility of the Transport
object.

Each wampy Session manages its own WAMP connection via the Transport.

Once the connection is established, the Session is begun when the Realm is joined. This is achieved by sending
the HELLO message.

Note: Routing occurs only between WAMP Sessions that have joined the same Realm.

begin ()

end ()

host

id

port

realm

recv_message (timeout=>35)
roles

send_message (message_obj)

wampy.messages.call module

class call.Call (procedure, options=None, args=None, kwargs=None)
Bases: object

When a Caller wishes to call a remote procedure, it sends a “CALL” message to a Dealer.

Message is of the format [CALL, Request |id, Options|dict,Procedure|uri, Arguments|list, Argument sKu
e.g.

[
CALL, 10001, {}, "com.myapp.myprocedurel", T[], {}
]

“Request” is a random, ephemeral ID chosen by the Callee and used to correlate the Dealer’s response with the
request.

“Options” is a dictionary that allows to provide additional registration request details in a extensible way.
WAMP_ CODE =48
message

name = ‘call’

wampy.messages.hello module

class hello.Hello (realm, roles)
Bases: object

Send a HELLO message to the Router.

16 Chapter 3. modules

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

wampy Documentation, Release 0.9.19

Message is of the format [HELLO, Realm|uri,Details|dict],e.g.

[
HELLO, "realm", {

"roles": {"subscriber": {}, "publisher": {}},
"authmethods": ["wampcra"],
"authid": "peter"

WAMP_CODE =1
message

name = ‘hello’

wampy.messages.goodbye module

class goodbye . Goodbye (details=None, reason="wamp.close.normal’)
Bases: object

Send a GOODBYE message to the Router.

Message is of the format [GOODBYE, Details|dict, Reason|uri],e.g.

[
GOODBYE, {}, "wamp.close.normal"

]

DEFAULT_ REASON = ‘wamp.close.normal’
WAMP_ CODE =6
message

name = ‘goodbye’

wampy.messages.subscribe module

class subscribe.Subscribe (fopic, options=None)
Bases: object

Send a SUBSCRIBE message to the Router.

Message is of the format [SUBSCRIBE, Request|id, Options|dict, Topic|uril],e.g.

[
32, 713845233, {}, "com.myapp.mytopicl"

]

WAMP_CODE = 32
message

name = ‘subscribe’

3.7. wampy.messages.goodbye module 17

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

wampy Documentation, Release 0.9.19

wampy.messages.publish module

class publish.Publish (topic, options, *args, **kwargs)
Bases: object

Send a PUBLISH message to the Router.

Message is of the format [PUBLISH, Request|id,Options|dict, Topic|uri, Arguments|list, ArgumentsKw|

e.g.

[
"com.myapp.mytopicl",
[23, 42, 71}

16,
{"color":

239714735, {},
"orange", "sizes":

]

(1,

WAMP_CODE = 16
message

name = ‘publish’

wampy.messages.yield module

class yield_.Yield (invocation_request_id, options=None, result_args=None, result_kwargs=None)

Bases: object

When the Callee is able to successfully process and finish the execution of the call, it answers by sending a

“YIELD” message to the Dealer.

Message is of the format

[
YIELD,
ArgumentsKw|dict

]

INVOCATION.Request|id, Options|dict,

Arguments|list,

“INVOCATION.Request” is the ID from the original invocat

ion request.

“Options”is a dictionary that allows to provide additional options.

“Arguments” is a list of positional result elements (each of arbitrary type). The list may be of zero length.

“ArgumentsKw” is a dictionary of keyword result elements (each of arbitrary type). The dictionary may be

empty.
WAMP_ CODE =70
message

name = ‘yield’

wampy.messages.register module

class register.Register (procedure, options=None)
Bases: object

A Callee announces the availability of an endpoint implemen
ISTER” message.

ting a procedure with a Dealer by sending a “REG-

18

Chapter 3. modules

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

wampy Documentation, Release 0.9.19

Message is of the format [REGISTER, Request |id,Options|dict,Procedure|uri],e.g.

[
REGISTER, 25349185, {}, "com.myapp.myprocedurel"

]

“Request” is a random, ephemeral ID chosen by the Callee and used to correlate the Dealer’s response with the
request.

“Options” is a dictionary that allows to provide additional registration request details in a extensible way.
WAMP_CODE = 64
message

name = ‘register’

wampy.peers.clients module

class clients.Client (url=None, cert_path=None, realm="'realml’, roles={ ‘authmethods’: [anony-
mous’], ‘roles’: {‘subscriber’: {}, ‘publisher’: {}, ‘caller’: {}, ‘callee’:
{ ‘shared_registration’: True}}}, message_handler=None, = name=None,

router=None)
Bases: object

A WAMP Client for use in Python applications, scripts and shells.
call

make_rpc (message)
publish
recv_message ()
register_roles ()
registration_map
request_ids

rpc

send_message (message)
session

start ()

stop ()

subscription_map

wampy.peers.routers module

class routers.Crossbar (url="ws://localhost:8080’, config_path="./crossbar/config.json’, cross-

bar_directory=None)
Bases: wampy .mixins.ParseUrlMixin

can_use_tls

3.12. wampy.peers.clients module 19

https://docs.python.org/3/library/functions.html#object

wampy Documentation, Release 0.9.19

start ()
Start Crossbar.io in a subprocess.

stop ()
try_connection ()

class routers.Router (url, cert_path=None, ipv=4)
Bases: wampy .mixins.ParseUrlMixin

wampy.roles.callee module

class callee.RegisterProcedureDecorator (*args, **kwargs)
Bases: object

classmethod decorator (*args, **kwargs)

wampy.roles.caller module

class caller.CallProxy (client)
Proxy wrapper of a wampy client for WAMP application RPCs.

Applictions and their endpoints are identified by dot delimented strings, e.g.

"com.example.endpoints"

and a CallProxy object will call such and endpoint, passing in any args or kwargs necessary.

class caller.RpcProxy (client)
Proxy wrapper of a wampy client for WAMP application RPCs where the endpoint is a non-delimted single
string name, such as a function name, e.g.

’"getidata"

The typical use case of this proxy class is for microservices where endpoints are class methods.

wampy.roles.publisher module

class publisher.PublishProxy (client)

wampy.roles.subscriber module

class subscriber.RegisterSubscriptionDecorator (**kwargs)
Bases: object

subscriber.subscribe
alias of RegisterSubscriptionDecorator

20 Chapter 3. modules

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

CHAPTER 4

Indices and tables

¢ genindex
* modindex

e search

21

wampy Documentation, Release 0.9.19

22 Chapter 4. Indices and tables

Python Module Index

C

call, 16
callee, 20
caller, 20
clients, 19
constants, 15

e

errors, 15

g

goodbye, 17

h

hello, 16

m

mixins, 15

P

publish, 18
publisher, 20
r

register, 18

routers, 19

S

session, 15
subscribe, 17
subscriber, 20

y

yield_, 18

23

wampy Documentation, Release 0.9.19

24 Python Module Index

Index

B

begin() (session.Session method), 16

C

Call (class in call), 16

call (clients.Client attribute), 19
call (module), 16

callee (module), 20

caller (module), 20

CallProxy (class in caller), 20
can_use_tls (routers.Crossbar attribute), 19
Client (class in clients), 19
clients (module), 19
ConnectionError, 15

constants (module), 15
Crossbar (class in routers), 19

D

decorator() (callee.RegisterProcedureDecorator
method), 20
DEFAULT_REASON (goodbye.Goodbye attribute), 17

E

end() (session.Session method), 16
errors (module), 15

G

Goodbye (class in goodbye), 17
goodbye (module), 17

H

Hello (class in hello), 16
hello (module), 16
host (session.Session attribute), 16

id (session.Session attribute), 16
IncompleteFrameError, 15

class

M

make_rpc() (clients.Client method), 19
message (call.Call attribute), 16

message (goodbye.Goodbye attribute), 17
message (hello.Hello attribute), 17
message (publish.Publish attribute), 18
message (register.Register attribute), 19
message (subscribe.Subscribe attribute), 17
message (yield_.Yield attribute), 18

mixins (module), 15

N

name (call.Call attribute), 16

name (goodbye.Goodbye attribute), 17
name (hello.Hello attribute), 17

name (publish.Publish attribute), 18
name (register.Register attribute), 19
name (subscribe.Subscribe attribute), 17
name (yield_.Yield attribute), 18

P

parse_url() (mixins.ParseUrlMixin method), 15
ParseUrlMixin (class in mixins), 15

port (session.Session attribute), 16

Publish (class in publish), 18

publish (clients.Client attribute), 19

publish (module), 18

publisher (module), 20

PublishProxy (class in publisher), 20

R

realm (session.Session attribute), 16

recv_message() (clients.Client method), 19
recv_message() (session.Session method), 16

Register (class in register), 18

register (module), 18

register_roles() (clients.Client method), 19
RegisterProcedureDecorator (class in callee), 20
RegisterSubscriptionDecorator (class in subscriber), 20
registration_map (clients.Client attribute), 19

25

wampy Documentation, Release 0.9.19

request_ids (clients.Client attribute), 19
roles (session.Session attribute), 16
Router (class in routers), 20

routers (module), 19

rpc (clients.Client attribute), 19
RpcProxy (class in caller), 20

S

send_message() (clients.Client method), 19
send_message() (session.Session method), 16
Session (class in session), 15

session (clients.Client attribute), 19

session (module), 15

start() (clients.Client method), 19

start() (routers.Crossbar method), 19

stop() (clients.Client method), 19

stop() (routers.Crossbar method), 20
Subscribe (class in subscribe), 17

subscribe (in module subscriber), 20
subscribe (module), 17

subscriber (module), 20

subscription_map (clients.Client attribute), 19

T

try_connection() (routers.Crossbar method), 20

W

WAMP_CODE (call.Call attribute), 16
WAMP_CODE (goodbye.Goodbye attribute), 17
WAMP_CODE (hello.Hello attribute), 17
WAMP_CODE (publish.Publish attribute), 18
WAMP_CODE (register.Register attribute), 19
WAMP_CODE (subscribe.Subscribe attribute), 17
WAMP_CODE (yield_.Yield attribute), 18
‘WampProtocolError, 15

WampyError, 15

‘WebsocktProtocolError, 15

Y

Yield (class in yield_), 18
yield_ (module), 18

26

Index

	WAMP
	What is WAMP?

	User Guide
	What is wampy?
	A wampy Application
	A wampy Client
	Sending a Message
	Publishing to a Topic
	Subscribing to a Topic
	Remote Procedure Calls
	Exception Handling
	Authentication Methods
	The MessageHandler Class
	Testing wampy apps
	TLS/wss Support

	modules
	wampy.constants module
	wampy.errors module
	wampy.roles.callee module
	wampy.session module
	wampy.messages.call module
	wampy.messages.hello module
	wampy.messages.goodbye module
	wampy.messages.subscribe module
	wampy.messages.publish module
	wampy.messages.yield module
	wampy.messages.register module
	wampy.peers.clients module
	wampy.peers.routers module
	wampy.roles.callee module
	wampy.roles.caller module
	wampy.roles.publisher module
	wampy.roles.subscriber module

	Indices and tables
	Python Module Index

